
A New Standard in
Data Security
As more and more data migrates to the cloud, alternatives to big-tech storage players are
emerging with features that meet increasing security and privacy demands in new,
innovative ways. How? By incorporating a decentralized architecture.

Decentralized architectures offer inherent data integrity benefits including wide
distribution across geographies for fantastic disaster resilience, as well as resistance to
ransomware and bitrot. An edge-based security model combined with delegated
authorization provides flexible and secure access management capabilities—meaning only
you and those you designate have access to your data.

The world’s first cloud storage service powered through decentralization, Storj DCS
Decentralized Cloud Storage), delivers all of these inherent advantages plus a
multi-layered security approach that includes pushing end-to-end encryption client-side,
adding macaroon-based API keys, and providing simple, yet granular control. These
features enable developers to reduce the threat surface on critical data to almost zero.

The Power Behind Storj DCS Secure Storage

End-to-End Encryption Delegated Authorization Simple Developer Tools

Storj DCS offers end-to-end
encryption and
distributes erasure-coded
pieces on geographically diverse
Storj Nodes.

Users control the
automatically generated
encryption keys—making it
simple and secure.

Storj DCS pushes
access management to the
client and uses Macaroon-based
API keys for an added layer of
security.

Pushing access management
to the edge eliminates the
need for access control lists,
increasing privacy.

Storj DCS provides
easy-to-use developer tools to
manage both encryption and
access for file sharing.

Developers gain
unprecedented control to
maintain privacy while
securely sharing data.

A Multilayered Approach for Secure Encryption

Storj DCS utilizes multiple encryption technologies that work in concert to ensure your
data is secure—giving you absolute control over how your data is accessed.

End-to-End
Encryption

Path-Based
Encryption

Content &
Metadata
Encryption

Distributed
Data Storage

Encryption
Key
Ownership

When using
Storj DCS via
CLI, library, or
local gateway,
every object is
End-to-end
encrypted to
ensure that only
users have
access to their
data.

Each path is
encrypted
separately in a
hierarchical and
deterministic
way using the
root encryption
key.

All file segments
and metadata
are separately
encrypted so
only you know
what is stored
on Storj DCS.

The encrypted,
erasure-coded
file segments
are spread over
geographically
diverse Storj
Nodes.

Your encryption
keys and data
are yours.
Storj DCS never
has access to
them.

Storj DCS Encryption Methodology

When using Storj DCS via CLI, library, or local gateway, all data stored is end-to-end
encrypted on the client-side. What this means is users control all encryption keys and the
result is an extremely private and secure data store. Both the objects and the associated
metadata are encrypted using randomized, salted, path-based encryption keys. The
randomized keys are then encrypted with keys derived from the user’s encryption
passphrase. Neither Storj nor any Storj Nodes have access keys, data, or metadata.

Client-Side Encryption

Every object stored on the platform is first split into 64 MB segments, then encrypted
using one of two included encryption schemes, the default AESGCM 256 CTR, or
Secretbox. The encryption scheme is designed to be pluggable, meaning developers may
also integrate custom encryption schemes if requirements dictate it.

This encryption is designed to avoid using the same keys for content encryption of
different files and different segments of the same file. This is advantageous because it
makes sharing of encrypted files more secure and it doesn’t put other segments or files
at risk if one of them is compromised.

Path-Based Encryption

Paths are encrypted in a hierarchical and deterministic way using the root encryption
key. Each path component is encrypted separately based on information derived from
previous path components.

Consider an unencrypted path p made up of path elements p1/p2/…/pn. The end goal is
to generate an encrypted path e, which is made up of elements e1/e2/…/en. We achieve
this using the process shown.

The order of listed items is determined by the paths stored on the Satellite. Listed
items will always be returned in an order based on their encrypted path names, but
won’t be ordered alphabetically when the paths are decrypted. This method of path
encryption allows users to share content under their path with another user without
revealing anything at a higher level.

Content and Metadata Encryption

When a user uploads a file, it’s read one segment at a time on the client-side. Before
each segment is split up, erasure encoded, and stored on remote Storj Nodes, a
random content-encryption key is generated. A starting nonce equal to the segment
number is created and used, along with the random key, to encrypt the segment data.

Next, we generate the derived key, dk, which we define with sn+1 HMAC(sn, “content”),
where dk = K(sn+1 and sn is the last secret generated from the file path using the
technique detailed above. We add one more dimension of key derivation for content
encryption to ensure a user can’t derive the access key to an unshared file that has the
same prefix.

Each segment has metadata associated with it on the Satellite. Segment metadata
includes the random key used to encrypt a segment’s content. We encrypt the random
key with the derived key (dk) and a randomly generated nonce. The nonce is stored
along with the encrypted content key in the segment metadata. This way, we use a
different random encryption key for each segment, but anyone with access to the
derived key can decrypt those keys.

The encryption algorithm used for content and metadata is AESGCM, but being open
source, other algorithms could be used. AESGCM is an authenticated encryption
algorithm, which means if any encrypted data is tampered with, the client downloading

the data will know about it once the data is decrypted. The layers of content encryption
mean only you know what you’ve stored on the platform.

Distributed Data Storage

Privacy and security are further enhanced as the encrypted, erasure-coded pieces of
each segment are spread over diverse Storj Nodes around the world. Any effort to
compromise a file requires significant coordinated effort beyond the effort to crack a
single encryption key.

Take for example a 1GB file stored on Storj DCS. The file is split into 16 different
segments, with 16 different randomized, salted path-based segment encryption keys,
each segment divided into 80 or more pieces, with a total of 1,280 pieces stored on 1,280
different Storj Nodes.

If an individual Storj Node Operator went rogue, it could at most gain access to a single
encrypted, erasure-coded piece of a single file; this piece is only one out of twenty-nine
pieces of one segment out of sixteen, that comprise the file. No usable information can be
derived and if the piece is deleted, Storj DCS detects this and repairs as necessary.

Encryption Key Ownership

Your encryption keys are your data. Unless you deliberately share them with us, Storj
DCS never has access to your encryption keys. We provide all the tools to ensure your
data security and privacy are protected, along with the ability to share that data when,
how, and with whom you allow. If you lose your encryption keys, however, then you’ve
lost access to your data. Always make sure you’ve backed up your encryption key and
stored it somewhere safe.

Sophisticated Access Management with
Macaroon-Based API Keys

While encryption is very important to ensure privacy and security for data storage,
control over when and how data is shared and accessed is equally important. Storj
DCS provides macaroon-based API keys for managing access to objects.

Hierarchically Derived (HD API Keys

Similar to hierarchically derived (HD encryption keys, HD API keys are derived from a
parent API key. Unlike the HD encryption keys where the hierarchy is derived from the
path prefix structure of the object storage hierarchy, the hierarchy of API keys is derived
from the structure and relationship of access restrictions.

HD API keys embed the logic for the access it allows and can be restricted, simply by
embedding the path restrictions and any additional restrictions within the string that
represents the macaroon. Unlike a typical API key, a macaroon isn’t a random string of
bytes, but rather an envelope with access logic encoded in it.

Macaroon-based API Key

Benefits of Hierarchically Derived (HD API Keys

#1 No Centralized Access Control Lists - Access controls are generated client-side then
verified and interpreted server-side, eliminating the need for centralized access control
lists.

#2 More Secure Identity & Access Management (IAM By tying access to HD API
keys, rather than a centralized control system, capability-based models push security to
the edge, creating a more secure IAM system.

#3 Full Control Over Data Management Key-based ownership of object data enables
users to intuitively control their data as a first principle, and then delegate it as they see
fit.

#4 No Risk of Data Loss or Extortion The decentralized cloud eliminates the
increasingly apparent risk of data loss/extortion due to holding data on one single
centralized provider.

Supported Caveats for HD API Keys

API keys delegate access to a bearer token that can only be used in specific
circumstances through HMAC chained ‘caveats’ (i.e. restrictions on IP, time-server
parameters, and third-party auth discharges). These caveats can be extended and
chained, but not overwritten.

The specific caveats supported by Storj DCS are as follows:

● Specific Operations: Caveats can restrict whether an API Key can perform any
of the following operations: Read, Write, Delete, List.

● Bucket Caveats can restrict whether an API Key can perform operations on one or
more Buckets.

● Path and Path Prefix: Caveats can restrict whether an API Key can perform
operations on objects within a specific path in the object hierarchy.

● Time Window: Caveats can restrict when an API Key can perform operations on
objects stored on the platform, either before or after a specified date/time or
between to dates/times.

From a developer standpoint, HD API keys make it very easy to write code that
granularly defines security privileges. Once baked, the rules within the HD API key can’t
be changed, without reissuing the key itself.

Best-In-Class Developer Controls

As a developer platform, client-side encryption, erasure coding, and distributed storage
ensure your application data is extremely secure. We don’t stop there, however, we also
provide simple to use access management controls so your users can manage access to
their data.

A Simple Command for Access Management: The “Access Grant”
Access management on Storj DCS requires coordination of the two parallel
constructs—encryption and authorization. Both of these constructs work together to
provide a client-side access management framework that’s secure and private, as well
as extremely flexible for application developers.

When sharing access to objects, Storj DCS requires sending encryption and
authorization information about an object from one client to another. The information
is sent in a construct called an Access Grant. An Access Grant is a security envelope
that contains a path, a restricted HD API key, and an HD encryption key—everything
an application needs to locate an object on the network, access that object, and
decrypt it.

To make the implementation of these constructs as easy as possible for developers, the
Storj DCS developer tools abstract the complexity of encoding objects for access
management and encryption/decryption. A simple share command encapsulates both an
encryption key and a macaroon into an Access Grant in the format of an encoded string
that can be easily imported into an uplink client. Imported Access Grants are managed
client-side and may be leveraged in applications via the uplink client library.

Designed for Efficient File Sharing
While the API key is intended to be passed from an Uplink Client to a Satellite, the
encryption key is designed to be passed peer-to-peer, but never to the Satellite. For
efficiency and ease of use, the file-sharing functions of the Uplink Client constructs the

Access Grant that contains both the API key and the encryption key that’s passed
peer-to-peer. An application that receives an Access Grant and imports it then passes
the API key to the appropriate Satellite to obtain access to
the object, and then, as the object is downloaded, it’s decrypted client-side using
the HD encryption key.

Access Management at the Edge Delivers
Differentiated Value
The edge-based security model of Storj DCS provides easy tools for building
applications that are more private, more secure, and less susceptible to the range
of common attacks. Unlike other cloud storage providers, Storj DCS security
features are enabled by default—at no extra cost.

Storj DCS Security Features Deliver:

● Significantly Reduced Risk of Common Attacks Storj does not store your keys,
which means that common attacks that depend on breaching a central repository
of decryption keys are impossible.. The Storj DCS security model eliminates whole
categories of typical application attack vectors.

● Reduced or Eliminated Typical Threat Surfaces By separating trust boundaries
and distributing access management and storage functions, a significant
percentage of the typical application threat surfaces is eliminated or made orders
of magnitude more complex to attack.

● Enhanced Data Privacy With access managed peer-to-peer, the platform can
separate responsibilities for creating bearer tokens for access management from
encryption to use the data. Separation of these concerns enables decoupling
storage, access management, and use of data, ensuring greater privacy with
greater transparency.

● Delegated Authorization to the Edge Authorization delegation is decentralized
and managed at the edge but derived based on a common, transparent trust
framework. This means that access tokens generated at the edge can be efficiently
interpreted centrally but without access to the underlying encrypted data. This
maximizes privacy and security at scale.

● No Added Cost for Security Features Other cloud storage providers have a
separate product and associated cost for security features. For instance, the AWS
Detective solution. Yet even with the additional cost, the security capabilities do not
match up to the power and control of the Storj DCS platform—which includes these
capabilities out-of-the-box.

Storj DCS is Purpose-Built for Distributed Data

Distributed data storage architecture combined with edge-based encryption and
access management stores your data as if it were encrypted and stored on an
encrypted beach. The combination of client-side HD Encryption keys and HD API keys
in an easy-to-use platform enables application developers to leverage the
capability-based security model to build applications that provide superior privacy and
security.

Glossary of Terms

● Access Grant An encoded string that contains both a path key and an HD API key for
the purpose of sharing access to objects stored on the platform.

● AESGCM An authenticated encryption algorithm to make use of the Advanced
Encryption Standard and uses the Galois/Counter mode for encrypting blocks.

● API Key: A string generated for a project to authorize access management to data
on the platform. Our API Keys are macaroons.

● Caveat: An access restriction encoded into an HD API key, generated client-side,
and is interpreted by a Satellite.

● Derived Key A key derived from the path key for the lowest level path element. The
derived key is used to encrypt the random key before it is stored in a segment’s
metadata.

● HD API Key: A string generated from an API key (hierarchically derived) with one or
more caveats to authorize restricted access to data on the platform.

● HMAC Hash-based message authentication code. We generate HMACs using path
elements and encryption keys in order to derive new keys for lower levels of the path.
Using hashes makes it easy to generate keys from higher levels without making it
possible to generate higher-level keys from lower-level ones.

● Macaroon Authorization credentials provide flexible support for controlled sharing in
decentralized, distributed systems. Unlike a typical API key, a macaroon isn’t a random
string of bytes, but rather an envelope with access logic encoded in it.

● Object Encryption Key A key derived from the root secret and the file path. There’s a
different path key for every element in the path, and a path key is used to derive new
path keys for lower-level path items.

● Object Key or Path The representation of a file’s “location.” Paths are essentially an
arbitrary number of strings delimited by slashes (e.g. this/is/a/file.txt). On the Storj
network, the Satellite uses paths to keep track of file metadata as well as pointers
to storage nodes that possess encrypted file content.

● Random Key A randomly generated key used to encrypt segment content and
metadata.

● Root Secret The private client-side encryption key defined in the client configuration
used to derive keys for encrypting and decrypting data stored on the platform.

● Secretbox An authenticated encryption algorithm from the NaCl library that
combines the Salsa20 encryption cipher and Poly1305 message authentication
code.

● Segment The largest subdivision of a file. All the segments of a file are usually the
same size. In most cases, the last segment will be smaller than the rest.

Start Building on the Decentralized Cloud

Decentralization is already here, and it’s only going to get bigger, better, and more
mainstream as people discover the benefits of a decentralized model. Head over to
www.storj.io and see how the unparalleled privacy and security features of Storj DCS can
start benefiting you, your project, and your organization today.

http://www.storj.io
http://www.storj.io

