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Introduction

The field of artificial intelligence is going through a transformative explosion.  
Breakthroughs in the training and use of generative models have led to ongoing 
seismic shifts in multiple industries. Surprisingly, despite the intense amount of 
resources needed to train large generative models, the open source community has 
been holding their own with the behemoth companies that are shifting gears to go 
all in on AI. In particular, open source generative image models have become the 
top choice in terms of user scores. Through relatively low resource usage  
techniques like LoRa, this collaborative environment has produced a massive 
amount of transfer, storage, and distribution in terms of training data, base models, 
fine-tuned models and generated output, all over the world, with no real specific 
base location. This presents a number of storage and distribution challenges and 
costs for all of this data.

As Prof. Antonin Portelli at the University of Edinburgh discovered for high  
performance computing data, decentralized storage solutions are appealing  
precisely in this style of use case. As he says:

In this paper, we contextualize the different data and distribution-heavy workloads 
of the generative AI space. Then we share our study of how Storj works for  
distributing AI training data and generative AI models (along with code for 
HuggingFace). We will also share similar data and analysis from Dr. Portelli’s high 
performance computing use case. Finally, we share the economics of a Storj  
implementation.

 

Decentralized storage solutions can in principle  
allow for a much higher redundancy and geographical 
spread of the data, allowing strong resilience and wide 
availability compared to traditional, centralised data 
centre-based infrastructures

https://www.storj.io/blog/new-test-of-storj-performance-by-univ-of-edinburgh-shows-2x-improvement
https://www.storj.io/blog/new-test-of-storj-performance-by-univ-of-edinburgh-shows-2x-improvement


Where does storage and distribution fit in the 
AI workflow?

The current generative AI workflow broadly has three main phases:

1. Model training and creation

2. Model customization and fine tuning

3. Model execution and inference

In each of these stages, a compute step processes a large amount of data and 
runs through the relevant generative AI algorithms. We’ve laid out these three main 
phases below:

Figure 1: AI Model Development Lifecycle. This figure describes the typical stages of AI model 
generation, fine tuning and execution. Training data sets typically need to be transferred from a 
cloud storage repository to a training environment. Data sets and models are transferred  
between environments and ultimately any output of AI model workloads is delivered over a 
private network or the public Internet.

In each phase, there is potentially a sizable amount of data both stored and  
transmitted to compute resources. We have highlighted data as blue, data transfer 
in green and compute steps as red.
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Often, these phases and data sets, especially in the world of open source  
generative AI, are built and run by different entities and groups, in different locations 
around the world. This necessarily implies that there is a need to get large data sets 
distributed securely, performantly, and economically.And this needs to be done  
with data integrity to many different locations across a broad geographic area, 
without knowing in advance where those locations may be. In this document we are 
going to describe dataset distribution (useful for the model creation phase), and 
model distribution (useful for the execution phase), but there are potentially many 
other useful implementation patterns.

How Storj works for AI
In the Storj environment, data is not stored in a single location, but is instead 
distributed across a broad network of independently operated and statistically 
uncorrelated storage nodes. The system allows the aggregation of underutilized 
capacity in drives and data centers around the world into a single, logical,  
S3-compatible object cloud. Every file is encrypted and divided into 64MB  
segments, which are then sharded using Reed Solomon erasure coding. In a typical 
deployment, each segment is erasure coded into 80 pieces, of which any 29 can be 
used to reconstitute the segment. For more detail, please see: https://docs.storj.io/
dcs/concepts/overview.

Since data is stored as small encrypted erasure-encoded pieces of objects  
distributed over our network of 24,000 points of presence in over 100 countries, the 
result is a storage service that has both fast consistent performance anywhere in 
the world at a very economical cost. When it comes to AI workloads, model  
generation, fine-tuning, and execution take place all over the world, wherever the 
requisite compute resources are located. Data gravity and data portability have a 
profound impact on the pace of innovation and the way the Storj network is  
architected makes it an ideal fit for the distributed nature of AI workload evolution. 
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A storage service that has both fast  
consistent performance anywhere in the 
world at a very economical cost.

https://docs.storj.io/dcs/concepts/overview
https://docs.storj.io/dcs/concepts/overview


LAION training data distribution

Our first case is training dataset distribution.

For test purposes, we downloaded the LAION-5B dataset’s English-only embedding, 
laion-2b-en, which we then uploaded to both Storj and Amazon S3 (us-west-2). 
While the copy of the data set hosted on Storj1  represents 3.5 TB of data, we 
focused our benchmarking and tests on the first ten 1.4 GB image embedding files, 
14 GB of data, starting with img_emb_0000.npy2  and ending with img_emb_0009.
npy.

One thing we noted - many of these large data sets are composed of many objects, 
most of which are likely to be on the upper bound of CDN object delivery maximum 
sizes3 . While this presents a challenge for many storage platforms, Storj has no 
such limitations.

Our test infrastructure was based on seven c-16-intel virtual machines running 
Ubuntu 22.10 in Digital Ocean, one in each datacenter of sfo3 (San Francisco), 
ams3 (Amsterdam), fra1 (Frankfurt), syd1 (Sydney), blr1 (Bangalore), tor1 (Toronto), 
and nyc1 (New York City). We used aria2 1.36.0 for accelerated downloading over 
HTTP, and we used Storj Uplink release v1.76.2 for Storj’s native protocol. To help 
with statistical accuracy and testing, we used the Hyperfine benchmarking tool 
release v1.16.1. 

Note that the map provided on each file on the Storj platform shares the real  
location of the storage nodes hosting the data, geolocated to their closest city. 
Below are the real locations for this first test file:

1 LAION-5B English embedding dataset hosted on Storj:  https://link.storjshare.io/s/jvdbhbogkj5x-

vd4occnk5c5j3nya/datasets/laion5b/embeddings/laion2B-en/
2 Full URL: https://link.storjshare.io/s/jvdbhbogkj5xvd4occnk5c5j3nya/datasets/laion5b/embeddings/

laion2B-en/img_emb/img_emb_0000.npy
3 Amazon CloudFront’s largest object size is 30GB. Other providers have similar restrictions.
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https://link.storjshare.io/s/jvdbhbogkj5xvd4occnk5c5j3nya/datasets/laion5b/embeddings/laion2B-en/
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https://link.storjshare.io/s/jvdbhbogkj5xvd4occnk5c5j3nya/datasets/laion5b/embeddings/laion2B-en/
https://link.storjshare.io/s/jvdbhbogkj5xvd4occnk5c5j3nya/datasets/laion5b/embeddings/laion2B-en/
https://link.storjshare.io/s/jvdbhbogkj5xvd4occnk5c5j3nya/datasets/laion5b/embeddings/laion2B-en/img_emb/img_emb_0000.npy
https://link.storjshare.io/s/jvdbhbogkj5xvd4occnk5c5j3nya/datasets/laion5b/embeddings/laion2B-en/img_emb/img_emb_0000.npy


Figure 2: Storj Object Map.This image shows the approximate location of Storj points of  
presence storing 1,760 encrypted erasure-encoded pieces of a 1.44GB object. Only a subset of 

the nearest pieces are required to reconstitute the original object. 

For each of the first 10 image embedding files, on each virtual machine, hyperfine 
was run as follows:

hyperfine –cleanup ‘rm /tmp/dobench-* || true’ –show-output \

    –export-json benchmark-REGION-TIMESTAMP.json \

    –command-name “AWS S3 us-west-2” “aria2c -x 16 -s 16 https://bucket.s3.us-
west-2.amazonaws.com/…/img_emb/img_emb_0000.npy dir=/ –out=tmp/
dobench-out” \

    –command-name “AWS S3-acceleration us-west-2” “aria2c -x 16 -s 16  

https://bucket.s3-accelerate.amazonaws.com/…/img_emb/
img_emb_0000.npy –dir=/ –out=tmp/dobench-out” \

    –command-name “Storj DCS Global” “uplink cp -p 16 sj://bucket/img_emb/

img_emb_0000.npy /tmp/dobench-out” \  

    –command-name “Storj HTTP Gateway” “aria2c -x 16 -s 16 https://link.
storjshare.io/raw/…/img_emb/img_emb_0000.npy –dir=/ –out=tmp/
dobench-out”

This command tests and benchmarks standard S3 access, S3 access with  
transfer acceleration, Storj direct network access, and Storj access through our 
HTTP gateway. 
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Figure 3: Mean Performance Comparison AWS-Storj. This diagram shows a comparison of 
the mean time to download the single upload of the test data test data set of ten 1.44GB image 
objects from the seven different datacenters in different regions, comparing the performance of 
standard S3, AWS S3 Accelerated Transfer, Storj native protocol and Storj Edge services. Lower 
values indicate faster overall performance.

Figure 4: 99th Percentile Performance Comparison AWS-Storj. This diagram shows a  
comparison of the 99th percentile time to download the single upload of the test data test data 

set of ten 1.44GB image objects from the seven different datacenters in different regions,  
comparing the performance of standard S3, AWS S3 Accelerated Transfer, Storj native protocol 
and Storj Edge services. High variability indicates inconsistent global performance. 

The results are that standard Storj performance in general is much better than standard S3 
performance, considering global distribution. Here is the same data plotted as distance from the 
AWS us-west-2 datacenter: 
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Figure 5: Global Performance Consistency Comparison AWS-Storj. The Figure above shows 
the change in performance between download samples based on progressively increasing 
geographic distance from the point of origin, using geographic distance as a proxy for number of 

hops for network transit. An increasing slope indicates a degradation in performance based on 
globally distributed access patterns, whereas a flat line indicates globally consistent performance 
regardless of origin or access pattern.

Try it out for yourself and download LAION-5B’s English language embedding 
here: https://link.storjshare.io/s/jvdbhbogkj5xvd4occnk5c5j3nya/datasets/laion5b/
embeddings/laion2B-en/ 
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StarCoder model distribution

Our next assessment is model distribution.

We conducted a real-life experiment by downloading the relatively large (64 GB) 
StarCoder AI model from the HuggingFace. We executed the experiment on a 
Hetzner cpx31 VM at Ashburn, Virginia.

As we can see on the HuggingFace page of the StarCoder model, all large files are 
stored in Git-LFS.

Figure 6: Sample Training Set Object Sizes. The image above shows a representative sample of 
the objects that compose the StarCoder AI model.

First, we modified the http_get and hf_hub_url functions of the  
file_download.py file of the huggingface_hub library to print the URL of 
the downloaded file. Then we executed a Python script for code generation that 
downloaded the entire model through the huggingface_hub library.
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The screenshot below shows that downloads for files stored on Git-LFS are  
redirected to cdn-lfs.huggingface.co. The average download speed for all 64 
GB of data was 75.8 MB/s.

Figure 7. Actual Download Performance - AWS S3. Screen capture showing sample of actual 

throughput performance of downloads from AWS S3 with access credentials obscured.

It’s worth noting that the download happens from an AWS S3 bucket through  
CloudFront, but the CloudFront cache is not hydrated yet.

To conduct a download of the same model from Storj, we executed the following 
steps:
• We replicated the Git-LFS structure of the StarCoder model in a Storj bucket: 

https://link.storjshare.io/s/juzlwaj7ovnst5gtkv2km3rkriha/lfs-huggingface 

• We deleted the local download cache of the huggingface_hub library.

• We modified the get_hf_file_metadata function to override the redirect for 
Git-LFS downloads to link.storjshare.io instead of  
cdn-lfs.huggingface.co.

• We modified the http_get function to download from link.storjshare.io with 16 
parallel connections to get the best from the decentralized nature of the Storj 
network.

With these changes, we downloaded the 64 GB model with an average speed of 
212.7 MB/s, almost 3x an improvement over the original rate (75.8 MB/s). 
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Figure 8. Actual Download Performance - Storj. Screen capture showing sample of actual 

throughput performance of downloads from Storj with access credentials obscured.

We published our modifications to the huggingface_hub library as a Python  

monkey patch, so others can quickly reproduce these results: https://github.com/
storj/huggingface-hub-storj-patch 

We also have a recorded demo of this experiment:  
https://link.storjshare.io/s/jxlzyjgj3pdc2msqm5my4w4pv3qa/videos/storj- 
huggingface-poc-demo.mp4 
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High-performance computing data  
distribution

Storj’s use cases are not limited to AI training data sets and model distribution. 

In 2021, Prof. Antonin Portelli at the University of Edinburgh conducted an 
experiment to ascertain the suitability of decentralized storage via Storj for high 
performance computing data storage and scientific data sharing.

The results were fascinating, and are worth reading in detail in his original report, 
along with the updated statistics from May of 2023.

One thing he focused on is how the Storj network adapts to concurrency and 
parallelism. Below is a graph that shows the throughput with various concurrency 
configurations:

Figure 9. Sample Result Download Performance - Storj. The Figure above shows the actual test 
results of object downloads between Storj and data centers located in Edinburgh, Scotland and 
New Jersey from the May, 2023 updated performance test conducted by Prof. Antonin Portelli.

To restate his key takeaway from his 2023 update: You can really reach very fast 
transfer rates thanks to parallelism. And this is something which is built-in natively 
in the Storj network, which is really nice because the data from many nodes are  
scattered all over the world. So you can really expect a good buildup of  
performances.
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How does Storj pricing for AI compare?

As you’ve seen, Storj offers durable storage with S3 Transfer Accelerated-like 
speeds. But even more excitingly, Storj is able to do it with the lowest prices in the 
cloud market.

To drive that last point home, here are two price comparisons:

Figure 10: Cost Comparison AWS-Storj. The figure above shows the one month cost to store 
and retrieve a data set 1x based on the standard retail price published on the providers’ publicly 
available pricing web page.

Figure 11: KB/s/$ Cost Comparison AWS-Storj. The figure above shows a normalized KB/s/$ 
cost to store and retrieve a 500TB data set 1x based on the standard retail price published on the 
providers’ publicly available pricing web page. Lower values indicate a high cost as performance 
and corresponding throughput increases.
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Conclusion

The number of AI data sets is growing exponentially and the size of the data sets 
is increasing rapidly as training models become increasingly sophisticated. Open 
source models and innovative startups have been able to outpace development 
by the largest and best funded hyperscale platforms on the market. As the market 
evolves the sheer expense of storing and moving large data sets around the 
internet may allow those same hyperscale platforms to create a moat around the 
generative AI use case, stifling innovation by artificially driving up the cost to store 
and transfer data as a barrier to entry.

For global file distribution of large amounts of data, such as AI training data, AI  
models, any other point of the generative AI workflow, or even other use cases 
entirely, Storj is able to distribute globally at AWS S3 Transfer Accelerated-like 
speeds with the lowest prices in the cloud market. 

Storj is also easy to integrate into existing applications, either with native language 
bindings, or with hosted gateway solutions. Storj does not require changes in 
application behavior and can be used in any context existing cloud object storage 
solutions are used.

We hope you found this analysis interesting!  We would like to help you improve your 
model distribution strategy utilizing parallelism + erasure coding.  Looking forward 
to working with you to replicate these findings.
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Storj and Generative AI: Eight Key Takeaways

1. Storing and distributing large amounts of AI training data, models, and output 
can present storage and distribution challenges. Distributed storage solutions, 
such as Storj, can offer higher redundancy, geographical spread, and resilience 
compared to traditional data center-based infrastructures.

Figure 1: Storj Object Map. This image shows the approximate location of Storj points of  
presence storing 1,760 encrypted erasure-encoded pieces of a 1.44GB object. Only a subset of 
the nearest pieces are required to reconstitute the original object.

2. The generative AI workflow broadly has three main phases: model training and 
creation, model customization and finetuning, and model execution and  
inference. Each of these phases requires a large amount of data processing.

Figure 2: AI Model Development Lifecycle. This figure describes the typical stages of AI model 
generation, fine tuning and execution. Training data sets typically need to be transferred from a 
cloud storage repository to a training environment. Data sets and models are transferred  
between environments and ultimately any output of AI model workloads is delivered over a  
private network or the public Internet.
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3. Storj performs much better than traditional storage like AWS S3, especially in 
terms of global distribution. Storj was used to store the LAION-5B dataset's 
English-only embedding and it was found to perform significantly better than 
AWS S3.

Try it for yourself:  
https://link.storjshare.io/s/jvdbhbogkj5xvd4occnk5c5j3nya/datasets/laion5b/
embeddings/laion2B-en/

4. The StarCoder AI model from HuggingFace was downloaded faster from Storj 
than from the traditional AWS S3 bucket, showing that Storj can outperform 
traditional methods of data storage and retrieval. 
https://github.com/storj/huggingface-hub-storj-patch

5. Storj is not only useful for AI training and model distribution, but also for 
high-performance computing data storage and scientific data sharing. This 
versatility was demonstrated by an experiment conducted by Prof. Antonin 
Portelli at the University of Edinburgh. 
https://www.storj.io/resource/university-of-edinburgh-performance-report

6. The Storj network adapts well to concurrency and parallelism, providing a 
built-in performance boost as data is scattered worldwide. Storj offers similar 
performance to S3 Transfer Acceleration, but at much lower costs. This makes it 
a cost-effective solution for distributing large amounts of data globally. 
https://www.storj.io/blog/new-test-of-storj-performance-by-univ-of-edinburgh-
shows-2x-improvement

7. Storj can be easily integrated into existing applications with native language 
bindings or hosted gateway solutions, without requiring changes in application 
behavior. 
https://docs.storj.io/dcs/getting-started/gateway-mt 
https://docs.storj.io/dcs/getting-started/quickstart-uplink-cli/prerequisites

8. This study concluded that Storj is an excellent solution for global file distribution, 
particularly for AI training data and models, due to its high speeds, low costs, and 
easy integration. It was suggested that other organizations might benefit from 
adopting Storj to improve their own model distribution strategy. 
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